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ABSTRACT

167!9

The volt-ampere characteristics of Langmuir probes employing
ideal geometries (spherical or cylindrical) contain a éonsiderable
amount of information, much of which 1s not utilized in the usual
analysis progrems. The slopes of the V-i curve for large accelerating
potentials contain a substantial amount of information oun mass density
and temperature. We have developed equafions for the current and its
slope in this region for both of.the abo&e geoﬁetries apd have applied
them to a few typical siEuations. _We,conclude that tﬁe usefulness -
of Langmuir probe techniques may be appréciab1y<impfoved by perfofming
a "total analysis" on the avéilable information. In some cases,
measuring the slopes directly will supply the same information with a

substantial saving in experimental complexity,

“Author



" INTRODUCTION:

Langmuir probes have been used extensively for ioncspheric investi-
gation for some time. They have been applied primarily to-the measurement
of electron temperatures by employlng a retarding potential analysis and
to the measurement of electron densities, usually by observing the current
in the "electron saturation" region. Bettingerl has suggested an expansion
of the analysis to include properties of the positive ions by using the
slope of the voit-ampere curve at iarge accelerating potentials. tihis i
"wing-slope' technique eae suggested as a meane of‘measnring positive,ion

temperatute with a small diameter sphericalfprdbe. The equationrgoverning

ps

the behavior of the slope of‘the volt-empere'characterietie‘in thé';egion?z/Jf
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analysis, we may obtain the charge density with excellent azcuracy since
the results are ipdependent of the origin of both the current and volrage
scales. Assuming charge neutrality, the 1ion satucration region can then
be examined to obtain the product of the ion mass and temperature. 1If
either is known from an independent source, then the other is readily
obtainable. 1In general, the mean ion mass is assumed to be known and this
technique vields ion temgeratures.

Brace and Reddy2 have suggested the use of cylindrical geometry
which is inherently less sensitive .o plasma tempéra;ure. The current to
a small diameter cylindrical probe has been given by Mott-Smith and

Langmuir3 as

- - 1 .
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where i is the contribution of any given component of the plasma and

'L is the probe length. The slope of this curve is given by the relation

e

. 1 li -
di _ 2 (2 7? 1
av, | e {eV m} KT ’ SIS
p e leVp i+ KL T
- ] - eVp S

where the term in braces approaches unity as the ﬁotential of/fhe

probe becomes large with respect to the equivélént thermal'potentiél/ggl:/

[%}]. This’compiete absence of a temberature debendence_for’large probe -

_potentials is the most notable feature of this relation. Functionally,
Eﬁ. (1Y and Eq. (3) have merely interéhanged the temperature and the

—

probe potentials. Eq. (3) may be used to determine =2uy one of the
- parameters (ne,m,Vp) in terms of the other twc. Since the ambient
density and the probe potential are move readily obctained by other means,

this relation generally supplies information on the ion mass. Tf/we.»'“’ o



in which- o - - ‘_ ‘ :.1—77 -

consider the electron saturation vegion, where the mass is a known
constant, any two points may be used to solve Eq. (3) for both remaining
parameters n, and Vp. In a manner analogous to that‘suggesged for‘use
with the spherical probe, this informatiocn may be used to evaluate these
constants in the positive saturation region, leading to a value for tbhez
nass of the isas. | |

CYLINDRICAL PROBE:

The foregoing analysis assumes probes at rest with respect to the -

plasma, and while tlis approach is valid when considefing the ionospheric

electrons,- it is often not even approximately correct.for the heavier

L

‘ions and seldom completely valid. Let us coﬁéider a small qiaheterA

cylindrical probe-in the extreme case of a very large vehicle veIoEiEy,

Y]
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where .u 1is the translational velocity of the probe with respect to the

R

plasma gtfféét.: 1f we/ﬁéglect,enq effects, i.e., a prde7of“iﬁfinite

/,lédgth,'and orientithe’piobe péréllel to the velocity vector u, Eq. (3)

. to the velocity vectdr, then the current to the probe is, accquiqg;tgf T

-

Mott-Smith and LéngmuirB; of the form

Y

will contihﬁé»to’apply.. If on the other hand, we orient the probe normal

[eey,
e
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The slope of this relation is

’ 1 \ 1
a2 [ _2 S (6)
dv e | ev 1+U
i eV

It will b2 noted that Eqs. (3) and (6) are identical except for the
interchange of the energy terms (kT [}ﬁ, (3)t) for U [ﬁq. (6i] ).

In cases where the probe potential is large compared with these energiés,

i 53
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-the expressions are identical. This condition may be roughly catis{ied

at altitudes below 500km with sounding rocke‘s, but at satellite

o \velocitiesrénd’at the higher altitudes where ;hé;iog mass isuiess, thp
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where © 1is the angle between the probe axis and the velocity vector

u and where

. - [z | ©)

, (10)
V0

and Jn(x) is the nth order Bessel function of argument x. The glope

of this volt-ampere characteristic is given by

©
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Unfortunately, thi.. expression converges very slowly for large values
for the argument (V, large and c> 1). As an alternative we seek an

approximate expression which will make use of the experimentally

controllable condition

kT<<eVp (12)



The simplest assumption we can make is that the distribution of

thermal velocities is of the fomm

dn

dv -V

(13)

This replaces the Maxwellian distribution with the first term of its

general power expansgicn, 3 comnstant. The iimits ar< chosen to satisfy

the normalization condition. The differential of the current to a
~small diameter cylindrical probe due to the partiéles of velocity v

is given by rewriting Eaq. (5)

lei 2 11

% 32
= 7 - at
di = 2rlLe lm) {%mv + HJPJ d“n , (14)
where v 1is the particle v= ty in the plane normal tc ¢ - probe
axis. We chose a coordinate cvstem (%', ¥', 2', x', 7', - at rest

with respect to the plasma in wi.’:n ions possess a tiu3 .. -.nsional

velocity distribution given by

2 Ne
dn = —, dx'dy’ vy < %' < vy
4v (15
Vo & ¥' < v,

We transform to an unprimed set of coordinates moving with the probe
and with the z axis coinciding with the probe axis. The new velocity

components in terms of the old are



X = %'+ usin O
y = ¥ 7

(16)
z = 2'4+ucos O

Transforming Eq. (14) to the new coordinate system and integrating over

the appropriate iimits we obtain

1 {c+l
1 = Yrln_ev_ | @+ 8%+ vD)* dads a7
j—l Jc:—l
. . 2 eV
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Utilizing the assumption of Eq. (12), we mav expand the 1n term.
This reduces Eq. (18) to the form
c+l
- 2 2% 22 k)
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This result is identical to Eg. (5) although it was c¢evrived for arbitrary
values of U. The firsf order terms iu the temperature 7 = kT/'(eVp + U sm2 0)
have vanished and the neglected terms are of the order of 12 or ,reater.

We might improve the accuracy of our result by using a better

approximation for the thermal velocity distribution “unction. To this



end we modify (13) fer the one dimensional function by adding the

next term of the general expausion:

%? = cl(c2 - vz) dv -2 <v< i
(21)
= 0 \)2 > 9,2
where v ='§ and Cys €ps and £ are constants to be determined from
o ,
auxillary conditioms.
The current to the cylindrical probe becomes:
[ S . .
2 2 2y 2 2 2 ;
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where ¢ = (fa+c]” +y +¢) (24)

This series is obtained by expanding the 1n function resulting from

the integration and then combining terms. Invoking Eq. (12), we

neglect terms of (2/;) of order less than -1. Eq. (23) then reduces to:

‘ ' ) L2 - 2y .37
2t 2 (( 2) 220)
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This expression may be integrated to obtain

5 2 2 2 w2 c
i= 2aneevoc1 (22)(c,—£’—‘ §‘—£— -%—— - AL + —2-] 2(X+ + X))

37/ 12 8 2
&
‘-1122 2 13y )
it e Ly . 2 + o
2 2 2 2 2 + .}
+ &+ e, + - v A LSy Rttt
2 2 2 4 4 e J
X +4¢ -1
(26)
- R 2 2 2 i 2 2 - .
where: X~ = (Y + ¢ + 208 % 2¢8 )%= (5 + 20 % 20:0)%. 27)

Expansion of Eq. (27) yields:

The sum and difference terms are:

‘ . 2 2 2 2 3 3 2
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.The neglected terms are of the order of °r% or less. Since ! is of

§.

(30}



the order of unity, this term is negligibly small as compared to the
2 2 2 L
previous term (2 /§) unless ¢ >>y . In this case, these terms are

comparable and both negligible.

The 1n term way te handled in a similar fashion

. 2
. {14-&— +& 4 & +&~‘
1n ).(..__"‘_g__t_lt\._.ln
+ -
_ X c %J lf

. 27
L 3
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§ - § J
T2 A : ) (31) .

5

" Appiying Eq. (29), (30), and (31) to Eq. (26), we gptain/rélétively

T

simple expression for the current. -~

— - - . i - . ) 2 N - 2 7 7 |
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This expression is notable for its lack of an explicit tempeiaéure
dependence as was Ehe case ﬁreviously W{Eh the less general assumptjons.

These results are largely 1nde§endént of our agsumptfbps concerning the

form of the thermal velocity distribution fupction; requiring only fhat:*h

- " - - 7 -

2 L oo o - N
4 g' c,l/ (C] - —-.)’ (cz -—). m ] ] 7 . . (33)



The nermalization requirement

(¢
2
cy(c, - v ) dv =1 (34)

-2

yields the resuit:

o

z ch(cz - =1 (35)

W

2
¢ =g (36)

which is a second restriction on the form of the assumed velocity

distribution.

One suspects that a more vigorous treatment of the expansions

of Eq. (26) might yield the result:

2. -
2 2 T

i =2rlnev (4% ¢, )(ez - 3—9‘e (37)

2 2 5 -
) 2 !
Where the discrepancy between the terms (2—9 and (3—) result from

truncation error. This would then remove the condicion of Eq. (2).
In .ny case, it follows that Eqs. (5) and (6) are applicable whenever

the condition of Eq. (12) ig satisfied.
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SPHER1ICAL GEOMETRY

Let us now turn our attention to the case of a spherically
gsymmetric probe moving with an arbitrary velocity u ir a neutral
Maxwellian plasma. We assume the diameter of the probe to be small
so tnat sheath disiortions and wake effects can be ignored. We follow
our previous approach and consider the current to the probe due to a
moncenergetic beam of charges with velocity v given by Mott-Smith

.3
and Langmuir™:

eVp
i =Inrenv (1+ )
e Z

lamv

(38) -

We consider a set of spherical coordinates (v, Q. 4), fixed with respect
to the probe, with the prime axis (0 = o) oriented .parallel with the
drift velocity wu. The Maxwellian velocity distribution function in

this coordinate system is:

Re (1,2, 2 ) 2
dn = —p—— exp- (v +u" - 2uv coso Yo v sin® dvdods
(ﬂ%VO) : _ Vo B .
S (39)
We convert Eq. (38) to differeantial form, combing,it~wi€h Eq. (39)
to obtain the differential of the current, and integrate over the
appropriate linits:
" 211 (1 (w
Mr en i eV a - -7
- - 3 2. 2 ) .
1= —= & {1 + P )v exp‘\- ;L-(v +u - 2uv cos80)¢ sin® dvdOd¢
(ﬂ'iv )3 j t limvzj z v 2 \ - ] S
o o "9 0 0 s o - - N L I
o T 40y -
’/37( ) P
- “ e
- s
P - ' 2/// s
- ,“ //’/
/ P :/
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This expression may be readily integrated:

Y 2 N 1 ‘ 2 2 8° \/
1= 2% ngev, ve ° + = (v +c+8) e dR” (61)
0 ! - i
The integral is the sum of three incomplete T functions. This reduces
to the expression:
i 2 2 1
1= 2% ngevy (1 + 7)) 2 (42)
for zero drift velocity. For values of u such that u > 2v
v s
o, ( ev )
i7 Irngeu | 1+ p2 (43)
H ;ﬂnu
The slope of Ea. (41) is:
di fﬂrzn,e2 )
Eﬁé = T erf (c¢) (44) -

where erf(c) is the error function defined as

. . .
2 -g* '
erf(ec) = — J e dg

1 - (45)
n10 , ‘ « o

‘This has-the limiting values:

erf (¢) ~ —%—c - b,i
it

erf (¢) * 1



|—l
n

For small values of u Eq. (%44) reduces to Eq. (1). It is interesting
to note that in every case, for both probe geometries, the slope is

inversely prsoporticnal to a momentum.

APPLICATIONS

If the drift velocity is small ‘u < kvo),tﬁen the slope of the
cylindrical probe is characterized by the momentum associated with the
acceleratiﬁg potential. The sphere on the other hand, is sensitf/e to
the ion thermal velocity. _The slope wi?h both geometries 1s dominated -
by the drift momentum ﬁﬁen u is sufficiently large. - This criteria
usuai}y will be met'by the sphere at satellite velocities iﬂ-the
: ionosphere. fFor H+vat,éOOQ0k,' v, 5.?5 km/sec and u = 8_kﬁ[sé;.) o
ﬂénée,‘the ;pﬁere would éppear tdvbe aﬁ QXCélient‘device fop-mehggring |
ion mass in thisréipuatquF Its dependence is sgroQg ’(a-é)_ and
depéndsrbﬁiy onn,, u and constanfs. The éamg proﬁe:cguld be_used_ﬁo~ >s
— méasufe‘the elect;on tempe;;§ure since the electron thermal vélocity 15 ';
~ much lafge; than»tﬂé vehicle velocity.

The éylindrical-prpbe has ;nherent aspect sensit@bigy so that a
low drift velocity may always be appthima?ed by:briéntiqg the probé:axis
parallel to the velocitf véctog. In practice,thgvéphére, becausé offthg

ﬁbﬁﬁting problem, also hasvaspéct sensitivity which'requireé correction,

v

(e

(This problem has been treated'élsewhereig)n‘

Although the sphere displays a2 greater sénsitivityzt;niaﬁuﬁaﬁs:*it h ~~*<;~g

requires an independent measurement of charge concentration (or:a}tefnativély—
electron temperature). . The cylinder can measure neyby electron - - . -

acceleration, only requiring a knowledge of the‘véhicle'poéential. Error
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in this Jast parameter may be minimized by making the accelerating

potential large.

If we measure the ratio (R) of the slopes of the (V. - 1) curves
. 4

at large positive and negative potent1~‘e we’” obtain -

——

di - ) ) + j e
av_|v m 5 muzsi" " :
R=—R"P ;RV_ M+ M (43)
di e/\p
dv V+ AN / \\ /’J
p'p Lo

- <+ - - N - ‘
where™ V_~ are the absclute values of the probe to plasma potentials;

M is the mass of the ions in units of mp, the_proton mass. This

may be solved for M to obtain:

(8]

o eVp Y 5 [Me v 2m uzsiﬁZO % N S
M= || M1+ R[S B (48)

-2 2
m u<sin<@ eV
\P (= PI\P P

]

which is often not va}id.in the ionosphere, ‘The pessible ion types

range from H+ t0»N2+ and it is important4to noEe that the effective mass

=

to be employed in the previous equations is not in general the mean mass -

(m) usually defined as: i o S .
L o
_ =1 i1 H ,
T3 ‘ )
. e —

'sinceuthis.redhires a linear mase‘dependencef The’ﬁean ionic mgééthas'

o -3

The foregoing analyeis essemes a singie ionic species,‘én assumption

often Kend incorrectly) been employed bylinvescigatore;in7eva1uat1ng“the >

L
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ion current to various types of [Langmuir probes. For instance, for a

sphere at rest, the appropriate effective mass (meff) is given by

- . ——r

Z

I o~
=)

[

Ho
Tt

eff (50) -

[ e =

= o
= n.\"'L.
[\

[
—

I

This phenonmena is illustrated by Figure 1 where we have plotted the slore

for the (Vp-l) characteristic of a cylinder,éssuming "typical' ionospheric -

conditions. The slope is the sum of the individual contributors since:

)
[ e
|

. 1
= ’(8r2L2e3VP)2

I e~
=}
n\"‘i =

i=1

=)
\

hx-

o - : 8r2L2e3V n?
- P e

- (51)
meff

where we have assumed Eq. (12) to be applicable. It is apparent that the

2

lower .masses are much more heavily weighted. For instance, if we assume

-u sinp= 8km/sec; a slope of 2.0 x 10-10 mhc's and ion species of 0+ and
H+, we find that the fraction of H+ is only 13%. ; L -
. If we measure the dependence of the:slope (S = %%—) or the current
7 : .

(1) as a function of aspect angle we.can, theoretically at least, detefmipe ]

. e _ R ——

. s B _
the—mass-and-density distributions of-ions. We may write the slope in

- the -form:

_ 1 n ‘ o 7 )
) = (1 + K,m, sin?g) 1 = (52)
i=1 my :

$(0). = ¥,
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This equation involves 2j unknowns and, by selecting 2j values
cf 0, we can, in principie, -o0lve for these unknowns. In practice, this
anproach suffers from two difficulties. First, since our measurement
techniques will introduce finite errors, the number of independent
equations in O is sharply limited. Three ion types is probably the upper
limit oﬁ resolution for the best experimental accuracy and two tyy ¢
would be more typical. The second problem is the non-linear nature of
the relation which makes a closed form solution iﬁpossible. The equations
can, however, by solved by iteration.

This situation is somewhap better than it might appear since we
have several auxillary conditions we can apply. VFirst we have the -

summation of the concentrations:
, ]

Morz importantly, we have prior knowledge of the probable ion masses
so that this apprdach should yield reasonable information on the ion species.

o

and their concentrations.
This general‘approach finds a number of applications. For instance,
when considering the electror'dominated regions we may write;

‘ . eV :
:————-i -l(_'].". ' T .—E -
v =4 f @, 1,1,V) <0 (54)

. T (di p’ 7o’ p
d (&) ,‘ |
p , K

~where the second term takes into account the ion and phctcelectric

- currents and a possible zero.shift of the current axis. One could
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eliminate the second term by taking the rat?o of the first to .he
second deirivative; however, experimental accuracies will not usualiy
permit this procedure without appreciable smoothing of ~he data. While
the correction term is usually quite small, it can lead tu substantial
errcrs in evaluating {kg% with both Equation (54) and the more
conventional 1ln 1 versus YP curves. If we plot VT versus Vp, we
may eliminate f from Equation (54). (This approach is treated in
some detail elsewhere.) . |

The foregoing are onlv two of many possible applications of -wing-

slope techniques. We believe that ''ideal geometries' should be emplcyed

with Langmuir probes. for. ionospheric investigati~ = so that a "lotal

=

analysis" of the data will be possible. These internal cross checks with
the same detector can appreciably improve accuracﬁ dnd support a

substantial inc;eaée in our confidence in the results obtained from

such devices. .

15
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